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Two-dimensional complex parity-time-symmetric photonic structures
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We propose a simple realistic two-dimensional complex parity-time-symmetric photonic structure that is
described by a non-Hermitian potential but possesses real-valued eigenvalues. The concept is developed from
basic physical considerations to provide asymmetric coupling between harmonic wave components of the
electromagnetic field. The structure results in a nonreciprocal chirality and asymmetric transmission between in-
and out-coupling channels into the structure. The analytical results are supported by a numerical study of the
Bloch-like mode formations and calculations of a realistic planar semiconductor structure.
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I. INTRODUCTION

Parity-time (PT) -symmetric structures were initially pro-
posed as exotic systems with unusual properties; despite their
complex-valued potentials, the non-Hermitian Hamiltonians
describing those systems can have real eigenvalues [1].
First regarded as a curiosity in quantum mechanics, such
systems have recently been shown to have interesting and
useful applications in classical wave systems, especially in
optics. Indeed, PT-symmetric photonic systems have shown
intriguing new features, such as PT phase transitions [2]
and the realization of unidirectional invisible media [3,4] or
unidirectional waveguide transmitters [5,6]; some of these
effects have already been realized experimentally [2,5,6].

PT symmetry requires that the complex potential, U (�r) =
URe (�r) + iU Im (�r), obey the symmetry requirement U (�r) =
U ∗ (−�r), which means that the real part of the potential is
an even function, URe (�r) = URe (−�r), whereas the imaginary
part is odd, U Im (�r) = −U Im (−�r). Although the imaginary
part of the potential is generally difficult to obtain in nature, this
is not the case in optics. The classical analog to the real part of
the potential in optics is the refractive index, and the gain-loss
is analogous to its imaginary part. Therefore, by combining the
index and gain-loss modulations with the required symmetries,
such optical systems become classical analogs of quantum
systems described by PT-symmetric Hamiltonians [2–6].

To date, the pioneering works referenced above and recent
extensive literature on optical PT symmetry cover mostly one-
dimensional (1D) systems. On the other hand, recent works
on systems with gain-loss modulations in two dimensions
[7,8], and also on complex two-dimensional 2D crystals [9,10]
where the gain-loss and index are simultaneously modulated,
have shown the micro- and nanophotonics to be a platform for
developing synthetic materials with novel beam propagation
effects. However, none of these cases [7–10] can be attributed
to PT-symmetric systems because they do not meet the
requirements of PT symmetry.

In this paper, we propose a 2D PT-symmetric complex
photonic structure, and we show the properties inherent to its
2D character. We explore the light propagation within it, both

by realistic numerical calculations using the finite-difference
time-domain (FDTD) method, and by analyzing the Bloch-like
modes due to the complex modulation of the potential. We
observe strong asymmetric clockwise-counterclockwise flows
of light in the Bloch-like modes close to the crystallographic
resonances or, equivalently, close to high-symmetry points.
As a basic effect, we numerically show the measurable
asymmetric transmission of a Gaussian light beam incident
on a finite-sized structure resulting from asymmetric wave
coupling.

II. DERIVATION OF THE 2D HONEYCOMB
PT-SYMMETRIC STRUCTURE

To introduce the coupling effects in a 2D PT-symmetric
photonic structure, we start from a 1D PT-symmetric optical
system, the properties of which are summarized in Fig. 1. This
is essentially a superposition of a 1D Bragg mirror [Fig. 1(a1)]
and a balanced gain-loss modulation with the same periodicity
but spatially displaced by a quarter-period [Fig. 1(a2)]. In the
simplest case, we can consider the harmonic potential of the
structure in the form n (x) = n [cos (qx) + i sin (qx)], more
conveniently expressed as

n (x) = n exp (iqx) , (1)

where q is the reciprocal-lattice vector of the modulation,
and n is the amplitude of the complex index modulation.
Clearly, such a modulation unidirectionally couples a wave
with wave vector kB to kA = kB + q. In the right column of
Fig. 1(a2), a left-propagating resonant wave, kB ≈ −q/2, is
coupled to kA = kB + q ≈ q/2 and is thus Bragg-reflected
to the right. Alternatively, a harmonic Bragg reflector with
real-valued potential,

n (x) = n cos (qx) = n

2
[exp (iqx) + exp (−iqx)], (2)

symmetrically couples, at resonance, kA ≈ q/2 with kB ≈
−q/2, as illustrated in the right column of Fig. 1(a1). In this
way, the 1D PT-symmetric modulation given by Eq. (1) breaks
the symmetry of left-right wave coupling and propagation,
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FIG. 1. (Color online) (a1) Left: 1D Bragg reflector. Right:
Fourier transform (FT) of the structure, reciprocal-lattice vectors
and reciprocal coupling of wave vectors at resonance, n1 > n2. (a2)
Left: Gain-loss distribution (G, red; L, blue). Right: FT of the
combined 1D PT-symmetric structure from (a1) and (a2), symmetric
lattice vectors, and asymmetric coupling at resonance. (b1) Left:
Real part of Eq. (3), n0 = 1.1, �n = 0.1. Center: Arrangement of
cylinders. Right: FT of real cylinder’s structure and lattice vectors.
(b2) Left: Imaginary part of Eq. (3). Center: Honeycomb arrangement
of gain-loss cylinders, n = 1.1 ± 0.1i, n0 = 1.3. Right: FT of full 2D
PT-symmetric arrangement of cylinders. Insets in (b1) and (b2) show
the symmetric and asymmetric coupling at resonance.

which becomes most pronounced at resonance. Note that
this symmetry breaking is the main difference between the
potentials in Eqs. (1) and (2), and it is the reason for all
the peculiarities displayed by PT-symmetric systems, while
reciprocity always holds [11].

Keeping this basic principle in mind, we consider the
PT-symmetric complex crystal in 2D space. The simplest
choice is the trivial extension of the 1D PT symmetry
to 2D, n (�r) = nx exp (iqxx) + ny exp(iqyy), which simply
factorizes the PT symmetries in both quadratures but does
not lead to new 2D peculiarities. Therefore, we intend to
build the nonfactorizable PT symmetries, i.e., nonfactorizable
unidirectional coupling between the plane-wave components,
assuming that it will introduce 2D peculiarities (in comparison
with 1D PT-symmetric systems).

We chose a triangular lattice as the simplest nontrivial case:

n (�r) = n0 + �n
∑

j=AB,BC,CA

exp (i �qj · �r), (3)

which is generated by three vectors symmetrically rotated by
angles of 2π/3 with respect to one another, namely, �qAB,CA =
(q/2, ± q

√
3/2) and �qBC = ( − q,0), as represented in the

right column of Fig. 1(b2), where n0 is the refractive index
of the dielectric embedding medium, and �n determines the
amplitude of the complex modulation. Note that considering
only the real part of Eq. (3) leads to the corresponding dielectric
PhC with sixfold symmetry, as represented by Fig. 1(b1). At
resonance, |kA,B,C | = q

√
3/3, such a real structure (PhC case)

reciprocally couples the plane-wave components directed
along the symmetry axes, as schematically shown in the inset
of Fig. 1(b1). However, for the complex lattice described by
Eq. (3), the coupling is analogous to that given by Eq. (1), being
PT-symmetric in any direction. Such a complex lattice exhibits
a threefold symmetry, as shown in the inset of Fig. 1(b2).
This can be expected to produce peculiarities in PT-symmetric
systems.

Next, to design a realistic 2D PT-symmetric structure, we
replace the lower refractive index areas with low refractive
index cylinders [central column in Fig. 1(b1)]. The right
column of Fig. 1(b1) displays a sixfold reciprocal space
(Fourier transform) of the cylinder arrangement enabling
symmetric coupling. However, when such cylinders alterna-
tively exhibit gain and loss, as schematically represented in
the central column of Fig. 1(b2), the complex distribution
of the index contains the expected PT symmetry. Indeed,
the reciprocal space of the arrangement of cylinders [right
column of Fig. 1(b2)] reproduces the three points in the
configuration proposed in Eq. (3), leading to unidirectional
coupling between wave components. Apart from the three
points indicating the lattice vectors, �qAB,

⇀

qBC, and �qCA, other
higher-order harmonics of the complex distribution appear due
to the nonharmonic (stepwise) modulation of the potential.

The triangular lattice is seemingly the simplest nontrivial
case of a nonfactorizable 2D PT-symmetric complex crystal.
Further nontrivial cases could be realized for higher oddfold
rotational symmetry, which would also yield nontrivial 2D PT-
symmetric quasicrystals. Here we consider only this triangular
case.

III. ASYMMETRIC CHIRAL EXCITATION

We numerically check whether the proposed system
displays the expected properties of complex PT-symmetric
systems, in particular the asymmetric flow of light. Differ-
ently from one dimension, the asymmetric coupling between
wave vectors rotates the input by ±2π/3, depending on the
input channel. In other words, the structure is expected to
display a type of chiral nonreciprocity. This test is performed
numerically using the well-established FDTD technique [12].
We consider two finite-size structures of the same symmetry
containing the real and complex distributions shown in
Figs. 2(a) and 2(b), respectively.

We first analyze the propagation of a short broadband
pulse incident on the structure from the top in the vertical
direction and calculate the transmitted intensity on two
detectors, symmetrically located on both sides of the structure
[T1 and T2 in Figs. 2(a) and 2(b)]. The resulting spectral
transmission in the clockwise and counterclockwise directions,
normalized to the incident pulse intensity, is represented
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FIG. 2. (Color online) Schematic representation of (a) 2D PhC
(real) and (b) 2D PT-symmetric (complex) structures, and (c) and (d)
source and detectors. Clockwise and counterclockwise transmissions
as a function of frequency, in a/λ units, (“a” is the center-to-center
distance between cylinders of radius, R = 0.45a) for structures in
(a) and (b), respectively. Inset in (d) is a magnified view within
a/λ = 0.25 − 0.35. (e) and (f) Normalized intensity distributions for
an incident Gaussian beam (width 14a) on (a) and (b), respectively.
See the supplemental material in Ref. [14].

in Figs. 2(c) and 2(d) for each structure. When comparing
the transmissions, we clearly see the expected asymmetry
arising precisely at resonant frequencies a/λ ≈ 0.3, where “a”
is the center-to-center distance between cylinders; note that
q = 4π/3a [see Figs. 2(c) and2(d)]. Although the T1 and T2
spectra coincide perfectly for all frequencies, for the PhC case
in Fig. 2(c), the counterclockwise (clockwise) transmission
is enhanced (reduced) at resonance for the 2D PT-symmetric
structure in Fig. 2(d). Note that, except for a higher-order
resonance at a/λ ≈ 0.6 (due to high-order mode coupling),
the symmetry is still unbroken far from resonance, and both
curves coincide well at other frequencies.

For the PhC structure, an incident wave kA couples
symmetrically to kB and kC , as schematically shown in the
inset of Fig. 1(b1). We can observe that the field distribution
depicted in Fig. 2(e), obtained by numerical FDTD simulation,
is perfectly symmetric. However, the asymmetric flow of light
within the complex system enhances the transmission to the
counterclockwise output channel, T2, in Fig. 2(f), whereas
transmission to the T1 channel is suppressed. Figure 2(f)
demonstrates at a glance the asymmetric coupling schemat-
ically represented in the inset of Fig. 1(b2); the incident wave

�kA is coupled to �kB but not to �kC . Finally, we also find
that the situation depicted in Fig. 2(e) is very similar to the
field distribution from the 2D PT-symmetric structure far from
resonance, where no symmetry breaking is predicted.

Finally, we note that whereas �kA couples to �kB , −�kA

couples to −�kC . Thus, a −�kA wave, incident from the base
upward to the structure, would be transmitted clockwise
instead of propagating counterclockwise within the structure
due to the nonreciprocal chirality of the system. Note that
the closed set of lattice vectors (qAB + qBC + qCA = 0)
enables the simultaneous resonance of two disjoint triads,
namely (kA,kB,kC) and (−kA, − kC, − kB) in a circular chiral
coupling. The counterclockwise chiral mode is excited by kA,
and the clockwise mode by −kA, rendering the chiral flow of
light input-dependent.

IV. CHIRAL BLOCH-LIKE MODES CLOSE TO THE
PT-TRANSITION POINT

For a PhC, the Bloch modes are defined as localized
electromagnetic states of the periodic media that are invariant
in propagation. However, in a complex system described by a
non-Hermitian Hamiltonian, complex Bloch-like modes may
either amplify or decay in time. Below, we calculate such
Bloch-like modes analytically considering the simple case
of a harmonic PT-symmetric complex crystal of triangular
symmetry. We consider an incident plane wave with a
polarization perpendicular to the plane of the crystal and a
wave vector directed vertically, �k = (0, − k), near resonance:
�k = �kA + ��k. The small variations are considered to be in the
same incident direction: ��k = (0, − �ky). Disregarding the
second time derivatives, the wave equation can be written as

−2iω∂t
�E = c2

n(
⇀

r )
2 ∇2 �E + ω2 �E. (4)

We expand the electric field into the first three harmonics
of the field, which are resonant in the lattice, namely �kA =
(0, − k0), �kB = �kA + �qAB , and �kC = �kA − �qCA, and we obtain,
for the TM polarization,

E =
∑

j=A,B,C

aj exp[i(�kj + ��k) · �r]. (5)

Introducing the expansion in (5) into (4) yields coupled
equations between their amplitudes, aA,aB,aC ,

− i
n0

k0c
∂t

⎛
⎝

aA

aB

aC

⎞
⎠ =

⎛
⎜⎝

�kA · ��k �n/n0 0

0 �kB · ��k �n/n0

�n/n0 0 �kC · ��k

⎞
⎟⎠

⎛
⎝

aA

aB

aC

⎞
⎠ .

(6)

The dispersion diagrams, i.e., the temporal eigenvalues
and the associated Bloch-like modes, are obtained by di-
agonalization of the matrix in (6). Figures 3(a) and 3(b)
display the real and imaginary parts, respectively, of the matrix
eigenvalues for the three Bloch-like modes at the edge of the
Brillouin zone, i.e., at resonance between lattice vectors. The
temporal evolution of the Bloch mode is defined by the matrix
eigenvalues with a factor in0/k0c. As expected, sufficiently
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FIG. 3. (Color online) Calculated dispersion diagrams and Bloch
modes. (a) Real and (b) imaginary parts of the matrix eigenvalues �ω,
where �ky , on the horizontal axis, is the distance from resonance in
k0 units. (c) Amplitude and (d) phase of the amplified chiral Bloch
mode for �k = 0, when illuminated from above and from below (e)
and (f), respectively; the insets show the counterclockwise/clockwise
asymmetric coupling. (g) Field intensity and (h) phase distribution
within the hexagon for an incident Gaussian beam with carrier
frequency a/λ = 0.303, corresponding magnified 6a × 6a region.
(i) Field amplitude obtained directly from FDTD calculation; the
arrow indicates the input channel. See the supplemental material in
Ref. [14].

far from resonance, all the eigenvalues are real-valued (where
the asymmetry of the coupling is not pronounced). Close
to resonance, the PT phase transition occurs, and we obtain
Bloch modes with complex eigenvalues, one with a negative
imaginary part and hence amplified in time. Therefore, in an
extended structure, after a finite propagation time, the field
distribution is expected to exhibit the amplitude and phase
corresponding to this amplified mode. Such an amplitude
and phase of the most amplified Bloch mode, as calculated
analytically from Eq. (6), are depicted in Figs. 3(c) and 3(d),
respectively.

To check the analytic predictions, we analyze the field
evolution after excitation by a relatively long Gaussian pulse
with central frequency at resonance and the spectrum narrower
than the width of the transmission resonance peak in Fig. 2(d).
Within the structure (a larger version of the same honeycomb
configuration), the incident radiation is redistributed among all
the coupled harmonics approaching a stationary distribution
of the growing Bloch-like mode, after a sufficiently long
time. The analytically calculated amplitude and phase of the
amplified chiral Bloch-like mode are shown in Figs. 3(c) and
3(d) [Figs. 3(e) and 3(f)], when the structure is illuminated
from above (below), respectively. The result presented in
Fig. 3(i) is used to extract the amplitude and phase of the
Bloch mode shown in Figs. 3(g) and 3(h), respectively. The
results agree well with the analytically calculated amplified
Bloch modes. The differences may be attributed mainly to the
simplified model used (not accounting for the real shape of the

FIG. 4. (Color online) (a) Dielectric slab, n = 3.474, 0.612 μm
high, with holes of radii 0.45 μm filled by p-n/n-p semiconductor
junctions, n = 3.46 ± 0.007i; a = 1.0 μm, where red (blue) circles
indicate gain (loss) areas (b) Clockwise-counterclockwise normalized
transmission on detectors T1 and T2. Electric field distribution
snapshots at cross-sectional planes (c) z = 0 and (d) x = 0. The
black arrow in (c) indicates the input channel.

scatter) and the interplay between higher-order harmonics, as
well as to the finite size of the structure.

V. IMPLEMENTATION PROPOSAL

Finally, we propose a possible realization of the investi-
gated 2D PT-symmetric complex structure, which could be
implemented and measured in microphotonic devices. The
configuration illustrated in Fig. 4(a) consists of a silicon
slab with a honeycomb lattice of alternating p-n and n-p
semiconductor junctions. Full 3D FDTD numerical simula-
tions were performed using the LUMERICAL software package
[13]. The device is illuminated by a broadband pulse with a
Gaussian profile, with a source of 7 μm width and 0.5 μm
height. Detectors T1 and T2 are symmetrically placed on
either side of the structure as shown in Fig. 4(a) to record the
transmission. The calculated normalized transmission spectra
at T1 and T2 are depicted in Fig. 4(b). A measurable clockwise-
counterclockwise asymmetry is observed in the transmission
near resonance at the wavelength λ = 1.501 μm (wavelength
in a vacuum). The steady-state electric-field distributions at
the cross-sectional xy plane (z = 0) and yz plane (x = 0) are
shown in Figs. 4(c) and 4(d), respectively. The electric-field
snapshot in Fig. 4(c) shows the asymmetric light transmission
along the directions of T1 and T2 at the resonance frequency.
Furthermore, the cross-sectional field distribution depicted
in Fig. 4(d) proves the vertical confinement and guiding
of the propagating beam inside the slab. As a result, the
out-of-plane losses are almost negligible for this specific
design.

VI. CONCLUSION

To conclude, we propose a simple 2D PT-symmetric pho-
tonic structure and analyze the propagation of light with it. As
predicted, we see that close to resonance, the system exhibits
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a nonreciprocal chirality associated with asymmetric wave
coupling between the plane-wave components. Therefore,
such a 2D PT-symmetric structure with a hexagonal shape
asymmetrically transmits light beams incident on it. In addi-
tion, we analytically calculate the Bloch-like mode formations
and find that indeed the more amplified mode agrees well
with the complex field and phase distributions in the structure
at resonance. Following the proposed scheme, we design
and numerically analyze, using full 3D FDTD simulations,
a 2D PT-symmetric feasible configuration. The proposed
2D planar semiconductor structure could be produced by

microfabrication and microstructuration of the electrodes to
achieve the modulated gain-loss. It may be expected that
new synthetic optical components could rely on such optical
systems.
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