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a b s t r a c t

Non-ideal multifrequency cloaking of dielectric cylinders is expected to be realizable by using single-

layer coating shells, which are made of isotropic homogeneous dispersive materials. In the present

paper, scattering on the coated cylinders is studied for the Drude–Lorentz materials with frequency

dependent permittivity and permeability. The exploited physical mechanism is based on the Fabry–

Perot-type radial resonances arising in the coating shells. The obtained simulation results confirm the

possibility of a strong reduction of the total scattering cross section at several frequencies

simultaneously. Resonance frequencies can be estimated by using simple algebraic equations. The

suggested mechanism can be used for TE and TM polarizations within a wide range of the variation of

the diameter-to-wavelength ratio.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The cloaks that make the dielectric and conducting objects
completely, or nearly completely, invisible have been in focus in
turn extensively raising interest throughout the past three years.
Several approaches have been suggested, which include those
based on the use of transformational optics [1–5], non-resonant
plasmonic (meta)material shells [6–9], transmission-line net-
works [10,11], and plasmonic resonance [12–14]. The first
approach is considered as the most universal, in which the
cloaking is realized due to the proper re-routing of electromag-
netic waves around the object to be cloaked. The specially
designed inhomogeneous metamaterials with anisotropy need
to be used, while for cylindrical objects magnetism is required
only if the electric field is polarized along the axis. It was
demonstrated that the coordinate variations of the tensor
components that are required for this approach can be obtained
in one- and two-dimensional layered structures with isotropic
constituents, some of which can be associated with circular
photonic crystals [15–18].

The second approach is based on the negative local polariz-
ability of plasmonic materials and metamaterials, of which the
cloaking shell is made. In this case, the scattering processes from
the shell and the dielectric object to be cloaked might compensate
for each other. Both of the mentioned approaches enable cloaking
in a wide range of the object-size-to-wavelength ratio, including

the values corresponding to resonant-sized objects. The third and
fourth approaches are based on the travelling of electromagnetic
waves through the cloak and on the localized plasmonic
resonance, respectively. Special attention has been paid to the
possibility of achieving a broadband and multifrequency cloaking
[5,11,17,19–22]. In particular, it has been shown that it is
sufficient to use a two-layer coating, which is made of isotropic
homogeneous plasmonic materials with properly chosen para-
meters, in order to cloak a spherical particle at two frequencies
simultaneously [21]. The possibility of using the frequency
dispersion of plasmonic materials for realizing cloaking at several
frequencies in multilayered structures has been discussed in [22].

The main goal of the present paper is to demonstrate the
potential of an alternative approach for obtaining a substantial
reduction of the total scattering cross section, i.e., non-ideal
cloaking, at multiple non-equidistant frequencies. It is based on
the coating of the objects to be cloaked with the shells that are
made of isotropic inhomogeneous dispersive materials. The
suggested heuristic approach is based on the assumption that
multiple Fabry–Perot-type radial resonances might appear in
cylindrical structures made of high-index materials. In turn, a
high frequency-dependent index of refraction can be obtained by
using Drude–Lorentz artificial materials, as well as materials that
are characterized by the dispersion of another type. We will show
that in case of an empty coating shell, which is made of a non-
dispersive high-index material, multiple minima of the total
scattering cross section do appear, in turn corresponding to the
frequencies of total transmission in case of a planar Fabry–Perot
resonator with the same thickness and material parameters. This
correspondence remains for dispersive materials, for which
Fabry–Perot resonance frequencies are non-equidistant, while
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placing a dielectric cylinder inside a shell results in a relatively
slight shift of the frequencies. Extensive numerical simulations
were carried out in order to validate the suggested approach.

2. Theoretical background

We studied the scattering of electromagnetic plane waves on a
dielectric cylinder of radius r that was coated with a ring shell
with the inner and outer radii r and R, which is made of a material
showing Drude–Lorentz dispersion. The permittivity and perme-
ability of the core and those of the shell are denoted by ec, mc, es,
and ms, respectively. According to [23], es and ms are given by

es ¼ 1�Co2
pe=ðo

2�iGeo�o2
0eÞ ð1Þ

and

ms ¼ 1�Go2
pm=ðo

2�iGmo�o2
0mÞ; ð2Þ

where o is angular frequency. If o0e ¼o0m, ope ¼opm, Ge ¼Gm,
and C ¼ G, the shell is matched to the outer air space at all
frequencies.

The normalized total scattering cross section is calculated as

s¼ ðkRÞ�1
X1

n ¼ �1

a2
n; ð3Þ

where an is the nth-order diffraction amplitude, which is given by
the analytical formula containing some combinations of the
cylindrical functions, which is obtained by using the Fourier–
Bessel series representations of the field and conservation of the
tangential components at the boundaries, and k=o/c is the free-
space wavenumber. Both TE (H-field is parallel to the cylinder
axis) and TM (E-field is parallel to the cylinder axis) polarizations
of the incident wave will be considered by placing an emphasis on
those cases, wherein a strong reduction of s can be obtained due
to the coating.

In line with the theory of planar Fabry–Perot resonators, the
dependence of transmittance t on o and the angle of incidence y
is given by the well-known Airy formula:

t¼ ð1�rÞ2=½ð1�rÞ2þ4r sin2
ðnkD cosyÞ� ð4Þ

where r, D, and n stand for mirror reflectance, distance between
the mirrors, and the index of refraction of the filling medium,
respectively. It follows from (4) that t=1 if

nkD cosy¼ pm; ð5Þ

where m¼ 0;71;72; . . .. The total transmission occurring in
such a resonator means that a far-zone observer located in the
incidence/reflection half-space does not see it at multiple
equidistant frequencies. The basic idea of the studied cloaking
mechanism originates from the analogy between the total-
transmission regime in the planar Fabry–Perot resonator and
the vanishing total scattering cross section in the corresponding
ring shell. In other words, the wave is expected to go through the
cylindrical shell without scattering in a similar way as in the
transmission-line networks approach [10]. Correspondingly, wave
processes at the front and back side interfaces in the planar case,
and at the outer and inner interfaces in the cylindrical case, are
analogous so that (5) might be used in the latter case, provided
that rbls where ls is wavelength in the shell material, i.e., n is
rather large. If t=1 in the planar case, a far-field observer should
not see the corresponding cylindrical structure.

Firstly, we consider a simplified case, when es and ms do not
depend on o and the shell is empty, i.e. ec=mc=1. Fig. 1 shows s vs
kD in this case. One can clearly see the multiple equidistant
minima, at which s tends to vanish. Their locations are in good
agreement with the kD values obtained from (5) where n is

replaced by ns ¼
ffiffiffiffi
es
p ffiffiffiffiffims
p

and y=0. Hence, the shell itself becomes
nearly invisible when the kD value corresponds to the total-
transmission regime of the planar Fabry–Perot resonator. The kD

values taken from Fig. 1 and those calculated by using (5) at y=0
are shown in Table 1 for TM polarization. A similar result was
obtained for TE polarization. Thus, our assumption concerning the
analogy between high-index planar and cylindrical (ring)
structures is quite justified. From the comparison of the cases
with ms=1 and msa1 in Fig. 1, it follows that the presence of
magnetism enables the obtaining of much wider resonances. This
feature is connected, in fact, with the dependence of r on the
impedance of the filling medium Zs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ms=es

p
.

Since the analogy with the planar Fabry–Perot resonators
works well in a dispersionless case, it is easily expecting that it
also works in the case of dispersive material. Before analyzing the
far- and near-field effects for dielectric cylinders coated with such
shells, we consider the general features of the location of the
total-transmission frequencies for planar Fabry–Perot resonators
filled with a Drude–Lorentz material. To do this, we substitute ec

and mc given by (1) and (2) to (5), assuming C=G=1, y=0, and n=nc,
and neglecting by Imec and Immc . In the impedance-matched case,
ec=mc, we obtain the following equation:

K3�LmK2�ðK2
p þK2

0 ÞKþLmK2
0 ¼ 0; ð6Þ

where K ¼oD=c, Kp ¼ kpD, K0 ¼ k0D, kp ¼ope=c¼opm=c,
k0 ¼o0e=c¼o0m=c, and Lm ¼ pm. For a purely dielectric Drude–
Lorentz medium (mc=1), this approach leads to

K4�ðK2
p þK2

0 þL
2
mÞK

2þL2
mK2

0 ¼ 0 ð7Þ

0.25 0.375 0.5 0.625 0.75 0.875
0

1

2

3

4

kD

S
ca

tte
rin

g 
C

ro
ss

 S
ec

tio
n

Fig. 1. Total scattering cross section vs kD at es=900 and ms=1 (blue solid line), and

es=ms=35.4 (red dashed line); R/r=1.4, ec=mc=1, TM polarization. (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 1
Comparison of the kD values for the minima of s in the empty shells in Fig. 1

(second and fourth lines), and for t=1 in the corresponding planar resonators

(third and fifth lines).

m 2 3 4 5 6

Blue line 0.2098 0.3147 0.4196 0.5243 0.6291

Eq. (5) 0.2094 0.3142 0.4189 0.5236 0.6283

Red line 0.1811 0.2714 0.3619 0.4524 0.5429

Eq. (5) 0.1775 0.2662 0.355 0.4437 0.5325
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where Kp ¼ kpD¼opeD=c and K0 ¼ k0D¼o0eD=c. The resonance
frequencies are found by solving (6) and (7) for K.

Fig. 2(a) shows an example of the location of the first and
second roots of (6) as a function of m. The small non-zero values
of Ge and Gm were used in the calculations. The basic feature
observed is that the resonance frequencies are located more
densely at increasing m, i.e., at decreasing jo�o0ej. The first group
of the roots corresponds to the positive values of m, es and ns, and
the second one corresponds to the negative values of m, es and ns.
A proper choice of dispersion should provide one with a required
number of the resonances within a fixed frequency range.

Note that the dense eigenmode spectra have been found in
some non-linear problems of laser optics and plasma physics
[24,25]. Although the densening is connected in our case with a
quite different physical mechanism, it would be interesting to
check as to whether the roots of (6) can show some kind of self-
similarity. To do this, we plot the m-dependence of the
logarithmic increment FðmÞ ¼ lgAðmÞ, where AðmÞ ¼ K̂ mþ1�K̂ m,
and K̂ mþ1 and K̂ m are the roots of the first group, see Fig. 2(b). The

constant slope occurs for several first m, in turn leading to a finite
scaling interval. It is seen that both the slope and interval width
depend on the problem parameters. Within the scaling intervals,
the increments approximately satisfy the equation AðmÞ ¼ B10�bm,
where b and B are the constants depending on the problem
parameters which include K̂ 1. Hence, the dependence of ns on o
can itself be a cause of the appearance of self-similarity. The same
occurs for the second group of the roots, which corresponds to
nso0. Similar features in the location of K̂ m are observed for the
first group of the roots of (7), i.e. at ms=1. However, in this case
there is no analog of the second group from Fig. 2(a), since ns is
imaginary-valued at o2

0eoo2oo2
peþo2

0e.

3. Results and discussion

Let us check as to whether the multiple minima of s appear for
a shell made of a dispersive material, when a dielectric cylinder is0 2 4 6 8 10 12
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Fig. 2. Normalized resonance frequency of the first (blue squares) and second (red

triangles) groups in units of kD=k(R�r) vs |m| at opeD/c=opmD/c=4 and o0eD/

c=o0mD/c=2—plot (a); Increment of the resonance frequency of the first group at

the same parameters as in plot (a) (blue squares), at opeD/c=opmD/c=8 and o0eD/

c=o0mD/c=4 (red triangles), and at opeD/c=8, o0eD/c=4, and opmD/c=0 (green

rhombs)—plot (b); R/r=1.4, Ge=ope ¼Gm=opm ¼ 10�6, C=G=1. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 3. Total scattering cross section vs kR at opeR/c=opmR/c=2.83, o0eR/c=o0mR/

c=2 and Ge=ope ¼Gm=opm ¼ 10�6 (blue solid line), es=ms=1 (pink dashed line),

ec=5.8, mc=1, TE polarization—plot (a); and at opeR/c=opmR/c=2.83, o0eR/

c=o0mR/c=2 and Ge=ope ¼Gm=opm ¼ 10�6 (violet solid line), es=ms=1 (red dashed

line), ec=2.8, mc=1, TM polarization—plot (b); R/r=2.0, C=G=1. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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located inside the shell. Fig. 3 shows s vs kR for the two
representative cases, in which the shells show the same
impedance as free space. Losses were kept low in order to
better see the possible manifestations of the Fabry–Perot-type
resonances. The multiple minima of s were observed, which
became denser while the difference between kR and o0eR/c was
decreased. Among these minima, there are ones that are
characterized by a more than tenfold reduction of s. Typically, s
at the minima takes the values from 0.02 to 0.04, so that one can
consider the observed reduction as the non-ideal cloaking. In Fig. 3,
the minimal s� 0:01 occurs in plot (b) at kR=2.295. In fact, the
structures in Fig. 3 correspond to a planar Fabry–Perot resonator
that is placed between two different media. However, because of a
relatively large index contrast between the shell and core and a
relatively small contrast between the core and free space, the
latter only leads to a slight shift of a resonance frequency. In fact,
it plays a role of perturbation, while the values of K̂ m can still be
estimated using (6). Note that the range of so0.1 in case with the
coating starts from es ¼ ms � 7:5 and m=2 in the vicinity of
kR=1.67 in Fig. 3(a), and from es ¼ ms � 14 and m=3 in the vicinity
of kR=1.84 in Fig. 3(b).

Both ranges with Rens40 (ooo0e) and Renso0

(o0eooo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

peþo2
0e

q
) similarly contribute to the multifre-

quency reduction of s. However, either the former as in
Fig. 3(a), or the latter as in Fig. 3(b), enables the obtaining of
the strongest reduction of s for a specific parameter choice. For
the examples shown in Fig. 3, the multifrequency cloaking

corresponds to 2r=l� 1=3, where l is free-space wavelength.
This ratio can be increased owing to a more careful parameter

choice. For example, 2r=l¼ 0:45 at the same parameters as in
Fig. 3(b), except for R/r=1.4, for both polarizations. At the
minimum of s near kR=2.52 in Fig. 3(b), es ��2:5 and m=�1.

A typical example of the axial field distribution at a minimum
of s is shown in Fig. 4. The resonant-type distribution with the
dominant role of the zero space harmonic occurs inside the core.
Hence, the incident-wave energy can be concentrated due to the
inner resonance. This feature distinguishes the suggested
approach from the most known cloaking approaches. In turn,
the field in the shell shows the multiple alternating minima and
maxima in the radial direction and rather weak dependence on
the azimuthal coordinate. This is consistent with the theory of

planar Fabry–Perot resonators. In fact, the wave propagating in
the radial direction within the shell weakly sees the curvature, in
turn producing a weak radial field component. The observed near-
field features are typical for the resonances with large m and
small s. Here, m=4 and s� 0:017. This example shows that a
volumetric mode excited inside the shell can co-exist with a
regime of weak scattering. Note that in our case this effect was
obtained in an azimuthally uniform structure. The illustrative
phase maps for purely dielectric high-index shells can be found in
[26]. The weaker the scattering, the weaker the phase
modification is outside of the shell.

Fig. 5 demonstrates that not only subwavelength objects, but
also resonant-sized objects can be cloaked, at least at relatively
small ec. The increase of o0e, o0m, ope, and opm, and decrease of
R/r are natural ways to obtain multifrequency reduction at
2r=lZ1. However, the parameters should be carefully adjusted.
In particular, the use of the negative-index band allows for
increasing 2r/l. For example, a more than tenfold reduction of s is
achieved at kR>o0eR/c, while 2r/l is varied from 0.94 to 1.21. The
range of so0.1 extends here from 2.02 to 5.32, and involve the
resonances with jmjZ1. Those with m=1 and m=�1 correspond
to kR=2.02 and Rees ¼ 4:835, and kR=5.32 and Rees ¼�2:715,
respectively. Owing to a rather large o0eR/c, the minima are
significantly shifted here with respect to those obtained using (5),
despite of a small index contrast between the core and shell.

Until now, we considered the cases of low losses. However, the
losses can set a strong restriction on the applicability of the
suggested approach due to suppressing the resonances at large
|m| and limiting the range of the variation of Rees and Rems. A
reasonable compromise between the losses, achievable range of
variation of Rees and Rems, and the thickness of the shell is a basic
engineering problem to be solved. Fig. 6 shows s vs kR for the two
cases with Ge and Gm being larger than in Figs. 3–5. Despite that
the expected effects of the losses increase take place, the minima
with near-zero s still exist, leading to the multifold weakening of
the scattering as compared to the corresponding non-coated
shells. In the case with ec=2.8 and Ge=ope ¼ 10�3, several minima
appear, for which so0.04. In the case with ec=5.8 and
Ge=ope ¼ 10�2, such a sole minimum has only been observed.
The possibility of obtaining the deep minima of s at

Fig. 4. Modulus of the axial field at kR=1.834 and the same remaining parameters

as in Fig. 3(a); the unity amplitude equals to that of the incident wave; the

structure is illuminated from the side of the negative abscissa values.
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Fig. 5. Total scattering cross section opeR/c=opmR/c=6.76, o0eR/c=o0mR/c=4,

Ge=ope ¼Gm=opm ¼ 10�4, C=G=1 (dark blue solid line), and es=ms=1 (pink dashed

line); ec=2.8, mc=1, R/r=1.4, TM polarization. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)
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Ge=opeZ10�2, at least for two kR-values simultaneously, is
presently under study.

In the former case, so0.1 is achieved within the range that
extends from kR=2.96 (m=2) to 3.63 (m=6), corresponding to Rees

varied from 3.76 to 8.1 and Imes varied from �9� 10�3 to
�7:32� 10�2. For the minimum near kR=3.63, the figure of merit
ðFOMÞ ¼ Rens=jImnsj � 110. In the latter case, the minimum of s at
kR=1.8 corresponds to m=1, Rees ¼ 3:51, Imes ¼�2:8� 10�2, and
FOM=124. According to Fig. 1, the multiple minima of s can
appear for purely dielectric empty shells. The results obtained
most recently show that the reduction of s can also be obtained
without any magnetism, while placing a cylinder inside [26].
Fig. 7 shows that a significant reduction of s can be achieved at
least at two kR-values simultaneously. Here Reec � 33,
Imec ¼�0:049 and m=1, and Reec � 123, Imec ¼�0:735 and
m=2 at the first and second deep minima, respectively. It is
noteworthy that the results for the purely dielectric shells are still
less promising from the point of view of multifrequency reduction
of s than those for the metamaterial shells.

4. Conclusions

To summarize, we studied the scattering of plane electro-
magnetic waves on dielectric cylinders coated with the shells
made of strongly dispersive materials. It was shown that the
multiple minima of the total scattering cross section can appear,
being connected with the resonances in the core and shell. In
particular, the multiple Fabry–Perot-type radial resonances can
appear in the shell. The non-ideal cloaking can be obtained
simultaneously at several resonance frequencies, which nearly
coincide with those of the total transmission in the corresponding
planar Fabry–Perot resonators. While the Drude–Lorentz disper-
sion has been assumed for the shell materials, similar scattering
features are expected to be obtainable for the dispersion of
another type. A necessary condition is that the index of refraction
of the shell material is varied within a wide range, providing the
existence of Fabry–Perot-type resonances that are located rather
close to each other. Engineering the cloaks that would involve

realistic lossy materials, and creation of a general theory of the
suggested cloaking mechanism, will be in the focus of future
studies.
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Fig. 6. Total scattering cross section at opeR/c=opmR/c=4.47, o0eR/c=o0mR/c=4,

Ge=ope ¼Gm=opm ¼ 10�3, C=G=1, ec=2.8, mc=1, R/r=3.2, TM polarization—blue

solid line; opeR/c=opmR/c=5.66, o0eR/c=o0mR/c=4, Ge=ope ¼Gm=opm ¼ 10�2,

C=G=1, ec=5.8, mc=1, R/r=2, TE polarization—green dash-dotted line; es=ms=1,

ec=2.8, mc=1, R/r=3.2, TM polarization—red dashed line; es=ms=1, ec=5.8, mc=1, R/

r=2, TE polarization—pink dotted line. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Total scattering cross section at opeR/c=4, o0eR/c=2 and Ge=ope ¼ 10�4

(dark blue solid line), and es=1 (pink dashed line); R/r=1.4, ec=2.8, ms=mc=1, TE

polarization. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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