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Solar-blind AlGaN-based Schottky photodiodes with low noise
and high detectivity
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We report on the design, fabrication, and characterization of solar-blind Schottky photodiodes with
low noise and high detectivity. The devices were fabricated on/n+ AlGaN/GaN
heterostructures using a microwave compatible fabrication process. True solar-blind operation with
a cutoff wavelength of~274 nm was achieved with f6a, _,N (x=0.38) absorption layer. The
solar-blind detectors exhibited 1.8 nA/cnt dark current density in the 0-25 V reverse bias regime,
and a maximum quantum efficiency of 42% around 267 nm. The photovoltaic detectivity of the
devices were in excess of X@0% cm HZ2/W, and the detector noise wad limited with a noise

power density less than>x310™2° A%/Hz at 10 kHz. ©2002 American Institute of Physics.
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Photodetectors that operate only in the 280 nm spec- p+ ohmic contacts are two challenging issues ffi—n
trum are named as solar-blind detectors due to their blindphotodiodes, while Schottky photodiodes do not face these
ness to solar radiation within the atmosphr@olar-blind ~ problems. Besides the ease of growth and fabrication, effi-
photodetectors are essential components for a number of apient collection of generated carriers within the junction and
plications including missile plume detection, flame/enginebetter high-frequency characteristics are the other advantages
contro, and chemical/biological agent sensing.of AlIGaN Schottky photodiodes. However, they lack from
Al,Ga, _,N-based photodetectors potentially offer significantlow efficiency mainly due to the optical absorption intro-
advantages over the current photomultiplier tube and siliconduced by the thin Schottky metal, and exhibit high leakage
based solar-blind detector technology in terms of size, comcurrents and poor noise performance. The reported best de-
plexity, cost, robustness, stability, power demands, andector performances obtained with solar-blind AlGaN
bandwidth? Moreover, its intrinsic solar blindnesgor x ~ Schottky photodiodes include a maximum responsivity of
=0.38) and the ability of operation under harsh conditions0-07 A/W at 290 nm along with a NEP of 660 ° W,"®a
(high-temperature and high power levetiue to its wide Minimum \. of 278 nm and a minimum dark current density

— 6 2 19 H
band gap makes ABa,_ ,N-based photodetectors attractive ©f 6:6X10°° A/cm®™." In this letter, we demonstrate low
for high-performance solar-blind detection applications. SevN0isé solar-blind AlGaN-based Schottky photodiodes with

eral research groups have demonstrated successful sol¥grY low dark current and high detectivity.

blind operation with AJGa, N photodetectors using The epitaxial structqre of the fropt-lllumlnated Schottky

photoconductivé? p—i—n,>* metal—semiconductor— detector wafer was designed to at_:hleve true solar-blindness,

metal(MSM), 15 and Schottk}’ ~2°detector structures. Cut- low I_eakage, and high solar rejectlpn. In order to meet these
requirements, Al;dGa N absorption layer was used to

achievel ;<280 nm. The A|Ga _,N/GaN epitaxial layers

8f our heterojunction Schottky photodiode wafer were grown

on a 2 in. single-side polishe®001) sapphire substrate us-

. . . . ing metalorganic chemical vapor deposition. A thin AIN

MSM photodiodes with a noise equivalent pOWBIEP) as nucleation layer was first deposited followed by a @u®

low as 30 fW at 280 nm and detectivity of 2.5 _ ) 4 . .
% 10 cm HZ'J/W correspond to the best noise performanceth'Ck unintentionally doped GaN mesa isolation layer. After-

; + 8 ~m—3 i
achieved for AlGaN-based solar-blind detector®ark cur- ward, a highly doped 2x10° cm ) ohmic contact

. ayer composed of 0.gum thick GaN and 0.2um thick
rents less than 2 pA at 30 V reverse bias and a 3 dB banc!— :
width of 100 MHz was reported for a AlGa,N MSM Alg 3dGay 6N were grown, respectively. The growth of the

! . . Schottky heterostructure was completed with the deposition
structurel.‘ft’ AloasGaeN p—i—n photodiodes on SIiC sub- g g um thick undoped AJ;dGa N active layer. The
strates with a|20W leakage currents were also successfull}(|ighly doped GaN layer was used for ohmic contact region
demonstrated-

) ) . due to the difficulty of obtaining high-quality ohmic contacts
When compared withp—i—n photodiodes, AlGaN 4, AlLGa, N layers. Then-type doped 0.2um thick
Schottky photodiodes have several advantages. Growth %0.3 GaoN layer was used as a diffusion barrier for the

p-type doped AlGaN layers and formation of low resistancepnsiocarriers generated in the GaN ohmic contact layer.
Such a diffusion barrier is expected to increase the solar-
¥Electronic mail: biyikli@ee.bilkent.edu.tr blind/near-UV rejection ratio of the detector.

off wavelengths X.) as short as~225 nm, an ultraviolet/
visible rejection over 5 orders of magnitude along with
responsivities as high as 0.12 A/W at 232 nm were reporte
using a A} -Ga, N p—i—n detector structur® Al Gay N
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FIG. 1. (I-V) characteristics of a 150150 um? solar-blind Schottky pho- > 10°t
todiode. Inset shows the same data plotted in logarithmic scale. z)
8 10%;
The samples were fabricated by using a four-step 2
microwave-compatible fabrication process in a class-100 & 10°; (b)
clean room environment. I_:lrst, the_: ohmic contact regions 250 275 300 335 350
were defined via reactive ion etchif®IE) under CCjF, Wavelength (nm)

plasma, 20 sccm gas flow rate, and 100 W rf power. The etch
rates for GaN and /B.l?,BG%.ezN Iayers were determined as FIG. 2. (a) Measured spectral quantum efficiency of the AlGaN Schottky
300 and 80 A/min, respectively. After an ohmic etch-ef.3 photodiod_e.(b) Corresponding responsivity curve of the device under 50 V
um, Ti/Al (100 A /1000 A contacts were deposited via ther- " ¢ > bias.
mal evaporation and left in acetone solution for lift-off pro-
cess. The contacts were annealed at 700°C for 30 s in mam under 50 V reverse bias. The cutoff wavelength red-
rapid thermal annealing system. Mesa structures of the deshifted with reverse bias, from 266 to 274 nm for 0 and 50 V
vices were formed via the same RIE process, by etching alleverse bias, respectively. Sinag<<280 nm was satisfied,
the layers &1.6 um) down to the undoped GaN mesa iso-true solar-blind detection was successfully demonstrated.
lation layer. Then, a~100 A thick Au film was evaporated The corresponding device responsivity curve under 50 V re-
to form the Au/AlGaN Schottky contacts. Finally, a verse bias is shown in Fig(ld. A peak responsivity of 0.09
~0.7 um thick Ti/Au interconnect metal was deposited andA/W at 267 nm is measured. The responsivity drops sharply
lifted off to connect the Schottky layers to coplanar wave-around 270 nm and a solar-blind/near-UV contrast of 4 or-
guide transmission line pads. ders of magnitude is observed within 80 nm. To estimate the
The resulting AlIGaN Schottky photodiodes had break-detectivity (D*) of our detectors in the photovoltaic mode,
down voltages above 50 V and turn-on voltages around 2 \ive have used the thermal-noise limited detectivity relation
Figure 1 shows the current—voltage—{V) characteristics of D* =R, (RyA/4kT), whereR, is the device reponsivity at
a 150 150 um? device. The leakage current of the diodeszero bias,R, is the zero volt dark impedance addis the
was lower than 1 pA for reverse bias voltages up to 30 V. Adetector area. With a 0.01 A/W photovoltaic responsivity at
can be observed in the logarithmic plot, the dark curren50 nm, the zero-bias detectivity of our detectors were in
fluctuated within 150—400 fA in the 0—-25 V reverse biasexcess of 2.810' cmHZ/YW, which corresponds to a
range. The actual leakage values in this range could not beetup limited NEP of 5.8 10~ % W/HZ*2.
measured due to the measurement setup resolution. These Finally, noise characterization of the solar-blind
leakage values correspond to dark current density values &chottky detectors were carried out in the frequency range of
0.7-1.8 nAlcrA. Hence, we can safely claim that our solar- 1 Hz—100 kHz using a fast Fourier transform spectrum ana-
blind detectors exhibited dark current densities lower tharyzer and a microwave probe station. Our low-leakage, high-
1.8 nA/cnt under reverse bias voltages as high as 25 V. Théreakdown voltage solar-blind detectors had noise power
differential resistanceR=dV/dl) of our detectors was cal- densities below the instrument resolution. Even under re-
culated and a dark impedance in excess df ID was ob-  verse bias as high as 25 V, the detector noise did not exceed
tained in the 0-25 V range. the measurement setup noise floor of B0 2° A%/Hz
Spectral photoresponse measurements were done in tlaeound 10 kHz. Therefore, we have measured devices with
250-350 nm range, using a xenon lamp light source, digher leakage currents in order to observe the bias depen-
single-pass monochromator, a lock-in amplifier, and a calidence of the spectral noise density. Figure 3 shows the low-
brated Si photodetector. Figurgal shows the measured frequency spectral noise density of a 8t diameter detec-
spectral quantum efficiency under reverse bias voltages ranger with ~7 orders of magnitude larger dark currents
ing from 0 to 50 V. The quantum efficiency increased with (>1 uA@5 V) and~ 14 V breakdown voltage. The spectral

reverse bias and reached a maximum value-d2% at 267 noise curves show that fl/noise is the dominant noise
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