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Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals
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We have experimentally observed the eigenmode splitting due to coupling of the evanescent defect
modes in three-dimensional photonic crystals. The splitting was well explained with a theory based on
the classical wave analog of the tight-binding (TB) formalism in solid state physics. The experimental
results were used to extract the TB parameters. A new type of waveguiding in a photonic crystal was
demonstrated experimentally. A complete transmission was achieved throughout the entire waveguiding
band. We have also obtained the dispersion relation for the waveguiding band of the coupled periodic
defects from the transmission-phase measurements and from the TB calculations.

PACS numbers: 42.70.Qs, 42.60.Da, 42.82.Et, 71.15.Fv
The artificially created three-dimensional (3D) periodic
structures inhibit the propagation of electromagnetic (EM)
waves in a certain range of frequencies in all directions
[1,2]. In analogy with electronic band gaps in semiconduc-
tors, these structures are called photonic band gap (PBG)
materials or photonic crystals [3,4]. The initial interest
in this area came from the proposal to use PBG crys-
tals to control spontaneous emission in photonic devices
[1]. However, the technological challenges restricted the
experimental demonstrations and relevant applications of
these crystals to millimeter wave and microwave frequen-
cies [5–7]. Recently, Lin and Fleming reported a pho-
tonic crystal with a band gap at optical frequencies [8,9].
With this breakthrough, initially proposed applications like
thresholdless semiconductor lasers [10] and single-mode
light-emitting diodes [11,12] became feasible.

By breaking the periodicity of the photonic crystal, it is
possible to create highly localized defect modes within the
photonic band gap, which are analogous to the localized
impurity states in a semiconductor [13]. Photons hop
from such a evanescent defect mode to the neighboring
one due to overlapping of the tightly confined modes.
This is exactly the classical wave analog of the tight-
binding (TB) method in solid state physics [14,15]. The
TB formulation has been proven to be very useful in
studying electronic properties of solids [16,17]. Recently,
the TB scheme was also successfully used for various pho-
tonic structures. Waveguiding along the impurity chains
in photonic insulators [18], waveguiding through coupled
resonators [19], and one-dimensional superstructure
gratings [20] were theoretically investigated by using TB
formalism. Lidorikis et al. tested the TB model by
comparing the ab initio results of two-dimensional PBG
structures with and without defects [21]. They obtained
the TB parameters by an excellent fitting to ab initio
results. Splitting of the coherent coupling of whisper-
ing gallery mode in quartz polystyrene spheres were
reported and explained within the TB photon picture
[22]. The optical modes in the micrometer-sized semi-
conductor coupled cavities were investigated by Bayer
et al. [23].
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In this Letter, we investigated experimentally and theo-
retically the coupling between localized cavity modes in a
dielectric-based layer-by-layer 3D photonic crystal within
the TB framework. We reported on the observation of
the eigenmode splitting in the coupled cavities. The split-
ting was well explained by the TB photon picture. The
TB parameters were extracted from the transmission mea-
surements. We demonstrated a new type of waveguiding
through localized defects. A complete transmission, nearly
100%, was observed throughout the entire waveguiding
band. The measured dispersion relation for the waveguid-
ing band agrees well with the TB results.

We used the layer-by-layer photonic crystal [24,25]
based on square shaped alumina rods (0.32 cm 3

0.32 cm 3 15.25 cm), with center-to-center separation
of 1.12 cm. The crystal exhibits a three-dimensional
photonic band gap extending from 10.6 to 12.8 GHz.
The experimental setup consists of a HP 8510C network
analyzer and microwave horn antennas to measure the
transmission-amplitude and transmission-phase properties
of various defect structures built around photonic crystals
(Fig.1). The defective unit cells were created by removing
a single rod from a single layer of the cell, where each
cell consists of four layers having the symmetry of a
face centered tetragonal structure [26]. The electric field
polarization vector of the incident EM wave e was parallel
to the rods of the defect layer for all measurements.

By using the aforementioned experimental setup, we
first measured the transmission amplitude through a
crystal with a single defective unit cell. This resulted
in a localized defect mode within the PBG which is
analogous to acceptor impurity state in semiconductor
physics [13]. The defect mode occurred at a resonance
frequency of V � 12.150 GHz with a Q factor (quality
factor, defined as center frequency divided by the peak’s
full width at half maximum) of �1000 [Fig. 2(a)]. Next,
we measured the transmission through the crystal that con-
tains two consecutive single rod removed unit cells. We
observed that the mode in the previous case split into two
resonance modes at frequencies v1 � 11.831 GHz and
v1 � 12.402 GHz [Fig. 2(b)]. The intercavity distance
© 2000 The American Physical Society
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FIG. 1. The experimental setup for measuring the transmis-
sion characteristics of the coupled defect structures in three-
dimensional photonic crystals. The electric field polarization is
directed along the removed rods.

for this structure was a � 1.28 cm, which corre-
sponds to single unit cell thickness in the stacking
direction. Figure 2(c) shows the transmission charac-
teristics of a crystal having three consecutive defective
cells, where the resonant modes were observed at fre-
quencies G1 � 11.708 GHz, G2 � 12.153 GHz, and
G3 � 12.506 GHz.

In order to understand the observed splitting due to cou-
pling of the individual cavity modes, we introduced the
classical wave analog of the TB model. In our case, the
eigenmodes of each cavity were tightly confined at the de-
fect sites. However, the overlap of the modes is enough to
provide the propagation of photons through neighboring
defect sites via hopping. Various forms of this picture suc-
cessfully applied to the photonic systems in the scientific
literature [18–21]. In this paper, we adopted the notation
used by Yariv et al. [19].
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FIG. 2. Transmission characteristics along the stacking direc-
tion of the photonic crystal: (a) For single defect with resonance
frequency V. (b) For two consecutive defects resulting in two
split modes at resonance frequencies v1 and v2 with intercavity
distance a � 1.28 cm. (c) For three consecutive defects with
resonance frequencies G1, G2, and G3.
We first considered an individual localized mode EV�r�
of a single defect that satisfies the Maxwell equations
which can be further simplified as

= 3 �= 3 EV�r�� � e0�r� �V�c�2EV�r� , (1)

where e0�r� is the dielectric constant of the single defect
and V is the corresponding eigenfrequency. Here we as-
sumed that EV�r� is real, nondegenerate, and orthonormal,
i.e.,

R
dr e0�r�EV�r� ? EV�r� � 1. This merely describes

the experimental structure used for Fig. 2(a).
In the case of two coupled defects, the eigenmode can

be written as a superposition of the individual evanescent
defect modes as Ev�r� � AEV�r� 1 BEV�r 2 ax̂�. The
eigenmode Ev�r� also satisfies Eq. (1) where e0�r� is re-
placed with the dielectric constant of the system e�r� �
e�r 2 ax̂� and V is replaced with eigenfrequency v of
the coupled defect mode.

Inserting Ev�r� into Eq. (1) and multiplying both sides
from the left first by EV�r� and then by EV�r 2 ax̂� and
spatially integrating resulting equations, the single defect
mode V is split into two eigenfrequencies

v2
1,2 � V2�1 6 b1���1 6 a1 1 Da� , (2)

where the TB parameters are given by a1 �
R

dr 3

e�r�EV�r� ? EV�r 2 ax̂�, b1 �
R

dr e0�r 2 ax̂�EV�r� ?

EV�r 2 ax̂�, and Da �
R

dr�e�r� 2 e0�r��EV�r� ?

EV�r�. By inserting the experimentally obtained eigen-
frequencies v1 and v2 [see Fig. 2(b)] into Eq. (2), the
TB parameters are determined as a1 � 20.102 and
b1 � 20.149. Here we assumed that Da is negligible
compared to a1 and b1.

This splitting is analogous to the splitting in the diatomic
molecules, for example H 2

1, in which the interaction be-
tween the two atoms produce a splitting of the degener-
ate atomic levels into bonding and antibonding orbitals.
Our results are the first direct experimental observation of
the bonding/antibonding mechanism in a photonic crystal
which was theoretically proposed by Antonoyiannakis and
Pendry [27].

Similarly, for a system with three coupled defects, the
eigenfrequency V is split into three resonant frequencies:

G2
2 � V2,

G2
1,3 � V2�1 6

p
2 b1���1 6

p
2 a1� ,

(3)

where we ignored the second nearest neighbor coupling
between the cavity modes. This turned out to be a rea-
sonable assumption for our case, since our experimental
observation showed that the second nearest neighbor cou-
pling parameters are 1 order of magnitude smaller than
the first nearest neighbor coupling parameters. Table I
compares the resonance frequencies, which were calcu-
lated by inserting TB parameters a1 and b1 into Eq. (3),
with the values obtained from the experiment [Fig. 2(c)].
The experimentally measured three split modes coincide
well with the theoretically expected values. This excellent
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TABLE I. The measured and calculated values of resonant fre-
quencies for the crystal with three defective unit cells.

Measured [GHz] Calculated [GHz]

G1 11.708 11.673
G2 12.153 12.150
G3 12.506 12.492

agreement shows that the classical wave analog of TB for-
malism is valid for our structure.

In the presence of the coupled periodic defect array, the
eigenmode can be written as a linear combination of the
individual defect modes [19,20]

E�r� � E0

X

n
exp�2inka�EV�r 2 nax̂� . (4)

The dispersion relation for this structure can be obtained
from Eqs. (1) and (4) keeping only the nearest neighbor
coupling terms [18,19]

v2�k� � V2 1 1 2b1 cos�ka�
1 1 Da 1 2a1 cos�ka�

. (5)

If the TB parameters, a1 and b1, are small compared to
unity, Eq. (5) is simplified to v�k��V � 1 1 k1 cos�ka�,
where k1 � b1 2 a1 � 20.047.

When the number of defective unit cells is increased,
a waveguiding band is expected to be formed due to the
coupling of individual resonant modes. We measured
the transmission through a ten unit cell crystal, where a
single rod is removed in each unit cell. As shown in
Fig. 3, the waveguiding band stands within the PBG ex-
tending from 11.47 to 12.62 GHz, with a bandwidth of
Dv � 1.15 GHz. Near 100% transmission was observed
throughout the waveguiding band. The amplitude of the
parameter k1 can also be determined from the waveguid-
ing bandwidth which gives us jk1j � Dv�2V � 0.047,
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FIG. 3. Transmission amplitude as function of frequency for a
waveguide structure which consists of ten consecutive defective
crystals (solid line). Transmission through a perfect crystal is
plotted for the comparison (dotted line).
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which is exactly the same with a previously obtained value
from the coupling of two cavities.

The dispersion relation for the waveguiding band can
be obtained from the transmission-phase measurement as
follows [28]. The net phase difference Df between the
phase of the EM wave propagating through the photonic
crystal and the phase of the EM wave propagating in free
space for a total crystal thickness of L is given by Df �
kL 2 2pfL�c. This expression can be used to determine
the wave vector k of the crystal at each frequency f within
the waveguiding band.

Figure 4 shows the comparison of the measured (dia-
monds) and calculated (solid line) dispersion relations. As
shown in Fig. 4, TB calculation gives good agreement with
the measured result, and the deviations between the experi-
ment and the theory are more pronounced around the edges
of the waveguiding band. We expect this discrepancy to
vanish as the number of unit cells used in the experiment
is increased.

The inset in Fig. 4 shows the comparison of the
theoretical (solid line) and experimental (dotted line)
variation of the group velocity, yg�k� � dv�k��dk �
2Vk1a sin�ka�, of the waveguiding band as a function
of wave vector k. The theoretical curve is obtained from
Eq. (5), while the experimental curve is obtained by taking
the derivative of the best fitted cosines function to the
experimental data. Notice that the group velocity vanishes
at the waveguiding band edges [19,29]. It is important to
note that, in the stimulated emission process, the effective
gain is inversely proportional to the group velocity [30].
The group velocity can be made smaller if one can reduce
the amplitude of the parameter k1.

0.0 0.5 1.0
ka/π

0.90

0.95

1.00

1.05

ω
(k

)/
Ω

Experiment
Theory 

0.00 0.50 1.00
ka/π

0.00

0.01

0.02

0.03

v g(
k)

/c

FIG. 4. Dispersion diagram of the waveguiding band predicted
from the transmission-phase measurements (diamonds) and cal-
culated by using tight-binding formalism (solid line) with k1 �
20.047. Inset: The normalized group velocity diagrams calcu-
lated by the theory (solid line) and obtained from the experimen-
tal data (dotted line) agree well and both vanish at the guiding
band edges, where c is the speed of light.
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In conclusion, we have observed the splitting of the
coupled localized cavity modes in the 3D layer-by-layer
photonic crystal. We have also demonstrated formation
of the waveguiding band within the stop band and com-
pared the measured dispersion relation of the guiding band
with the TB predictions. To our knowledge, these are the
first reported measurements from which TB parameters
and dispersion relation were directly obtained from the ex-
periment. The excellent agreement between experiment
and theory is an indication of the potential applications of
the tight-binding scheme in the photonic structures.
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Note added.—After submission of this manuscript,
we have observed the splitting phenomena by using
laser-micromachined alumina photonic crystals (W-band,
75–120 GHz). The TB parameter k1 � 20.045 was
found to be almost the same. Since the Maxwell’s
equations have no fundamental length scale, we expect
that our microwave and millimeter wave results can be
extended to the optical frequencies.
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